Mathematical Interfaces of Automated Scientific Computing

Andy R Terrel

Department of Computer Science University of Chicago

October 21, 2009 Computing Techniques seminar Fermilab

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing g Science

Computing
Algebraic Solvers
Functional Spaces

Acknowledgments

- L. Ridgway Scott (University of Chicago)
- Matthew R. Knepley (Argonne National Lab)
- Dmitry A. Karpeev (Argonne National Lab)
- Robert C. Kirby (Texas Tech University)
- Kevin R. Long (Texas Tech University)
- Anders Logg (Simula Research Lab)

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing g Science tle Science

The Automation of Scientific Computing

Functional Spaces
Equation Descriptions

Outline

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing ig Science ttle Science

Scientific Computing Algebraic Solvers Functional Spaces

The Future o

- Science and Computing
 - Big Science
 - Little Science
- The Automation of Scientific Computing
 - Algebraic Solvers
 - Functional Spaces
 - Equation Descriptions
 - Domain Representations
- The Future of Scientific Computing

Science and Computing

- Science and Computing
 - Big Science
 - Little Science
- - Algebraic Solvers
 - Functional Spaces
 - Equation Descriptions

Math Interfaces of Auto of Sci Comp

A Terrel

Science and Computing

Big Science Little Science

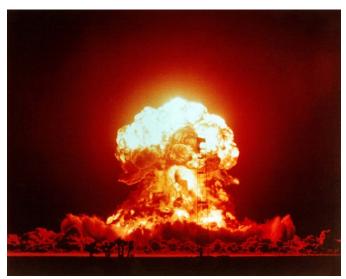
The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representation

Because experiments are expensive

Math Interfaces of Auto of Sci Comp

A Terrel


Science and Computing

Big Science Little Scien

> he Automation of cientific omputing

Igebraic Solvers unctional Spaces quation Descriptions omain Representations

Because experiments are dangerous

Math Interfaces of Auto of Sci Comp

A Terrel

Science and Computing

Big Science Little Scien

> Scientific Computing Algebraic Solvers Functional Spaces Equation Descriptions

Because experiments are not possible

Math Interfaces of Auto of Sci Comp

A Terrel

Science and Computing

Big Science Little Science

Scientific
Computing
Algebraic Solvers

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

Because simulations are faster

Math Interfaces of Auto of Sci Comp

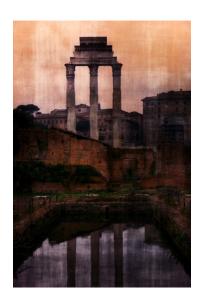
A Terrel

Science and Computing

Big Science Little Science

The Automation of cientific computing Algebraic Solvers Equation Descriptions

Because we need the data ASAP


Math Interfaces of Auto of Sci Comp

A Terrel

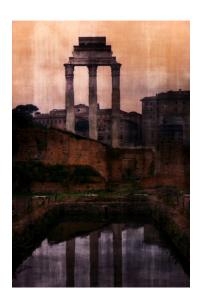
Science and Computing

Big Science Little Science

The Automation of Scientific Computing Algebraic Solvers Functional Spaces Equation Descriptions

- D'Alembert's
 Paradox
- Supernova flashback
- Rayleigh-Taylor

Math Interfaces of Auto of Sci Comp


A Terrel

Science and Computing

Big Science Little Science

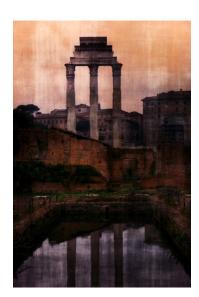
> cientific omputing

Functional Spaces
Equation Descriptions
Domain Representations

D'Alembert's Paradox

- Supernova flashback
- Rayleigh-Taylor
 Constant

Math Interfaces of Auto of Sci Comp


A Terrel

Science and Computing

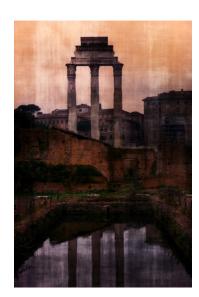
Little Science

cientific computing

Functional Spaces
Equation Descriptions
Domain Representations

- D'Alembert's Paradox
- Supernova flashback
- Rayleigh-Taylor

Math Interfaces of Auto of Sci Comp


A Terrel

Science and Computing

Big Science Little Science

ne Automation of cientific omputing

Augebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

- D'Alembert's Paradox
- Supernova flashback
- Rayleigh-Taylor Constant

Math Interfaces of Auto of Sci Comp

A Terrel

Science and Computing

Big Science Little Science

cientific omputing

Functional Spaces
Equation Descriptions
Domain Representations

Science and Computing

Little Science

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions

The Future Scientific Computing

The goal of this session is explore whether, when and why universities should do big or little science. Panelists may discuss why big science wastes money, exploits graduate students and makes research too short range. They may argue that little science produces results that are too deep and narrow, oblivious to global systems issues, not properly validated, and too out of touch with reality to ever be practical. Panelists may also find some advantages to both kinds of science.

ACM SIGARCH Computer Architecture News Volume 18, Issue 3a, June 1990

Big Science Little Science

The Automation of Scientific Computing
Algebraic Solvers
Functional Spaces
Equation Descriptions

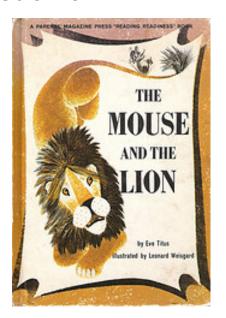
- Requires large, highly specialized coding projects
- Incredibly hard to design for maintainability, feature addition, and new hardware paradigms
- Resolves large open phenomena (or asks for more money)

Little Science and Rapid Development

- Able to use inefficient (general) methods
- Usually only test on small problems
- Can use (somewhat) exhaustive search of different possible methods.
- High Productivity Environment

Math Interfaces of Auto of Sci Comp

A Terrel


Science and Computing
Big Science
Little Science

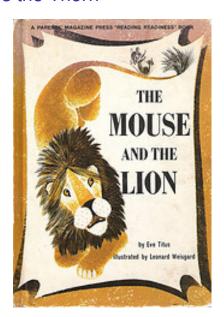
he Automation of Scientific Computing

Functional Spaces
Equation Descriptions
Domain Representations

- Pervasive abstractions
- Write general code, Generate specific code
- Fails due to bad interfaces

Math Interfaces of Auto of Sci Comp

A Terrel


Science and Computing
Big Science
Little Science

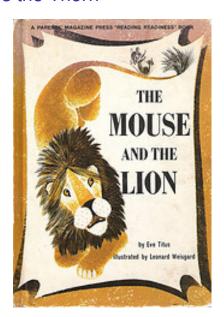
Scientific
Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

- Pervasive abstractions
- Write general code,
 Generate specific cod
- Fails due to bad interfaces

Math Interfaces of Auto of Sci Comp

A Terrel


cience and omputing sig Science

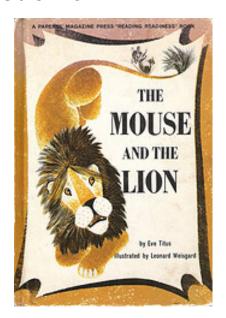
Little Science

Scientific
Computing
Algebraic Solvers

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

- Pervasive abstractions
- Write general code, Generate specific code
- Fails due to bad interfaces

Math Interfaces of Auto of Sci Comp


A Terrel

cience and omputing sig Science

Little Science

Scientific
Computing
Algebraic Solvers
Functional Spaces
Equation Descriptions

- Pervasive abstractions
- Write general code, Generate specific code
- Fails due to bad interfaces

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing Sig Science

Little Science

Scientific Computing Algebraic Solvers Functional Spaces Equation Descriptions

Algebraic Solvers
Functional Spaces
Equation Descriptions

The Future o

- Science and Computing
 - Big Science
 - Little Science
- The Automation of Scientific Computing
 - Algebraic Solvers
 - Functional Spaces
 - Equation Descriptions
 - Domain Representations
- The Future of Scientific Computing

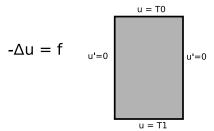
The Productivity Factors

How much code do I have to write:

Written Code	Generated Code
ANSI C: 50 lines	Assembler: 200 lines
FFC: 10 lines	C++: 20K lines
Quantum Chemistry: 6 symbols	FORTRAN: 1M lines

Math Interfaces of Auto of Sci Comp

A Terrel


cience and omputing g Science

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

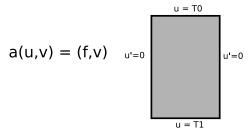
ne Future o cientific omputing

Find u on domain Ω , given f and BC

Math Interfaces of Auto of Sci Comp

A Terrel

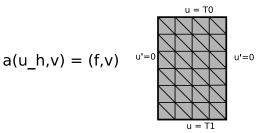
Science and Computing
Big Science


The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representation

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representation

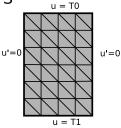
The Future of Scientific


Find u on domain Ω , given f and BC, such that for all v in the function space S

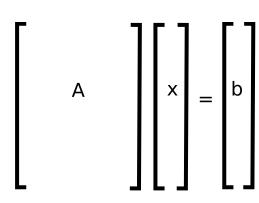
Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

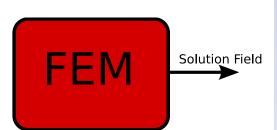
The Future of Scientific

Find u_h on a triangulization of domain Ω , given f and BC, such that for all v in the function space S


Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representation:

The Future of Scientific


Find u_h on a triangulization of domain Ω , given f and BC, such that for all v_h in the function space $V \subset S$


$$a(u_h,v_h) = (f,v_h)$$

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representation

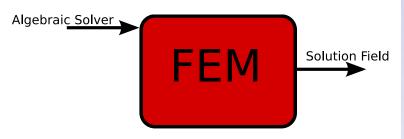
Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing ig Science

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

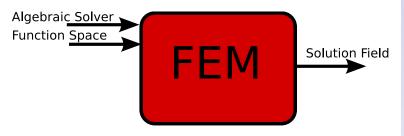

Math Interfaces of Auto of Sci Comp

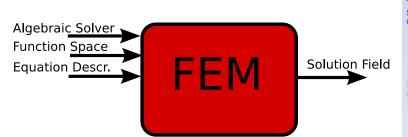
A Terrel

cience and omputing

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

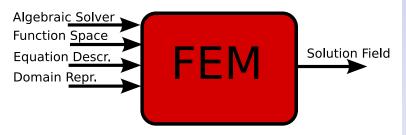

Math Interfaces of Auto of Sci Comp


A Terrel

cience and omputing

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions

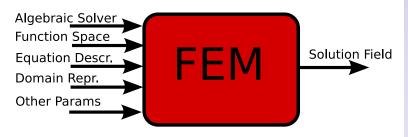

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations


Math Interfaces of Auto of Sci Comp

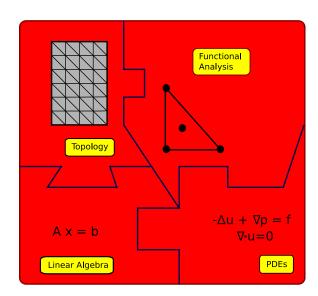
A Terrel

cience and omputing

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

Math Interfaces of Auto of Sci Comp


A Terrel

cience and omputing ig Science

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

Mathematics Necessary

Math Interfaces of Auto of Sci Comp

A Terrel

Science an Computing Big Science

The Automation of Scientific Computing

Functional Spaces
Equation Descriptions
Domain Representations

Algebraic Solvers

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing lig Science

The Automation of Scientific Computing

Algebraic Solvers

Functional Spaces
Equation Descriptions
Domain Representations

The Automation of Scientific

Algebraic Solvers

Functional Spaces
Equation Descriptions
Domain Representation

The Future of Scientific

$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ & \end{bmatrix} = \begin{bmatrix} b \\ & \end{bmatrix}$

- Model is able to capture lots of computations
- Reisz Representation Theorem

The Large Scale Success Story

- BLAS
- LAPACK
- Scalapack
- Atlas
- Flame
- Trilinos
- PETSc
- Hypre
- ... More to come (Salsa)

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing sig Science

The Automation Scientific Computing

Algebraic Solvers

Equation Descriptions

Domain Representations

Functional Spaces

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing sig Science

The Automation of Scientific Computing

Functional Spaces

Equation Descriptions

Domain Representation

Function Space Matters

Stokes Equation

- Taylor-Hood
- Crouzeix-Raviart
- Iterated Penalty

$$\begin{aligned}
-\Delta \mathbf{u} + \nabla \mathbf{p} &= f \\
\nabla \cdot \mathbf{u} &= 0
\end{aligned}$$

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing ig Science

The Automation of Scientific Computing

Functional Spaces

Equation Descriptions

Domain Representations

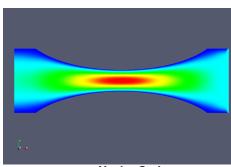
Function Space Matters

$$\frac{du}{dt} + u \cdot \nabla u = -\frac{\nabla \mathbf{p}}{\rho} + \nu \Delta \mathbf{u}$$

Navier-Stokes

- Stokes Solver
- Nonlinear Solver
- Time Stepping

Stokes Equation Taylor-Hood Crouzeix-Raviart


Iterated Penalty

Math Interfaces of Auto of Sci Comp

A Terrel

Functional Spaces

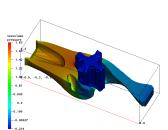
Function Space Matters

Stokes Equation Taylor-Hood Crouzeix-Raviart Iterated Penalty Navier-Stokes Stokes Solver Nonlinear Solver Time Stepping Non-Newtonian Flow

- Oldroyd-B
- Grade 2

Math Interfaces of Auto of Sci Comp

A Terrel


cience and omputing ig Science

Computing
Algebraic Solvers
Functional Spaces

Equation Descriptions
Domain Representations

The Future of Scientific Computing

Stokes Equation Taylor-Hood Crouzeix-Raviart Iterated Penalty

Navier-Stokes Stokes Solver Nonlinear Solver Time Stepping

Non-Newtonian Odroyd-B Grade 2

Free Boundary

Problems

Fluid Solid Interfaces

 Couple to legacy Codes

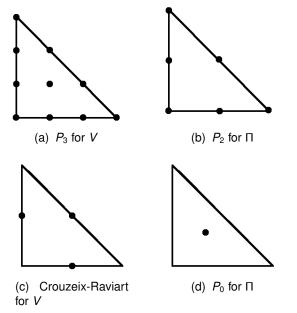
Success Story

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing Science

The Automation of Scientific Computing


Functional Spaces

Equation Descriptions

Domain Representations

- FIAT Algorithm [Kirby 2005]
- Syfi [Mardel et al 2007]

Stokes Function Spaces

Math Interfaces of Auto of Sci Comp

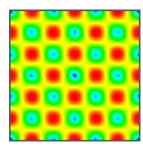
A Terrel

Science and Computing Big Science Little Science

The Automation of Scientific Computing

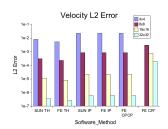
Functional Spaces
Equation Descriptions
Domain Representations

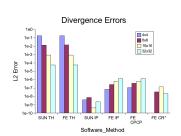
The Future Scientific Computing

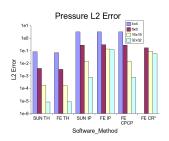


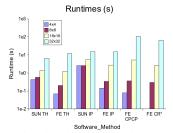
Functional Spaces
Equation Descriptions

Equation Descriptions


Domain Representations


$$\mathbf{u} = \begin{bmatrix} \sin(3\pi x)\cos(3\pi y) \\ -\cos(3\pi x)\sin(3\pi y) \end{bmatrix}$$
$$p = \sin(3\pi x)\sin(3\pi y)$$




Important Numbers.

Comparison of Fourth Order

Math Interfaces of Auto of Sci Comp

A Terrel

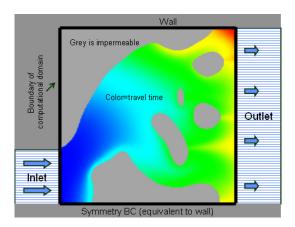
Science and Computing

Big Science

The Automation of Scientific Computing

Functional Spaces
Equation Descriptions

The Future of Scientific Computing


Equation Description

Math Interfaces of Auto of Sci Comp

A Terrel

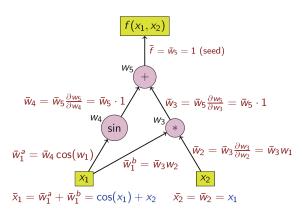
Equation Descriptions

Optimization

Math Interfaces of Auto of Sci Comp

A Terrel

Equation Descriptions


Backward propagation of derivative values

cience and computing

The Automation of Scientific Computing

Functional Spaces

Equation Descriptions

Domain Representation

Math Interfaces of Auto of Sci Comp

A Terrel

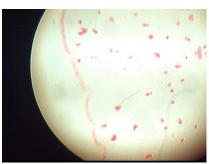
cience and computing Big Science Little Science

The Automation of Scientific Computing

Functional Spaces
Equation Descriptions
Domain Representations

Two Applications

Math Interfaces of Auto of Sci Comp

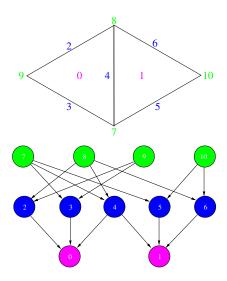

A Terrel

Science and Computing
Big Science

Computing
Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

Two Applications

Math Interfaces of Auto of Sci Comp


A Terrel

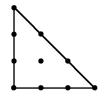
Science and Computing
Big Science

Ine Automation of Scientific Computing Algebraic Solvers Functional Spaces Equation Descriptions Domain Representations

The Future Scientific Computing

Sieve

Math Interfaces of Auto of Sci Comp


A Terrel

Science and Computing
Big Science

Computing
Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

The Future of Scientific Computing

Easy General Mesh

Simple Mesh

Points: 1,2,3

Edges: (1,2),(1,3),(2,3)

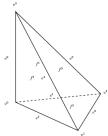
Face: (1,2,3)

Sieve Mesh

Points: 1,2,3

Edges: support(Points)
Face: support(Edges)

Math Interfaces of Auto of Sci Comp


A Terrel

cience and omputing g Science tle Science

Computing
Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

The Future of Scientific Computing

Easy General Mesh

Simple Mesh

Points: 1,2,3,4

Edges: (1,2),(1,3), (1,4),(2,3),(2,4),(3,4)

Face: (1,2,3),(1,2,4),

(1,3,4),(2,3,4)

Sieve Mesh

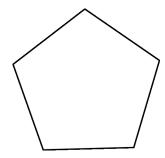
Points: 1,2,3,4

Edges: support(Points) Faces: support(Edges)

Little Science

Scientific Computing Algebraic Solvers

Math Interfaces of


Auto of Sci Comp

Functional Spaces
Equation Descriptions
Domain Representations

The Future of Scientific

◆□▶◆□▶◆□▶◆□▶ ■ めの○

Easy General Mesh

Sieve Mesh

Simple Mesh

Unsupported.

Points: 1,2,3,4,5

Edges: support(Points)
Faces: support(Edges)

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing g Science ttle Science

Computing
Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representations

Scientific Computing

The Automation of Scientific Computing

Algebraic Solvers Functional Spaces Equation Descriptions

The Future of Scientific Computing

A Terrel

- Science and Computing
 - Big Science
 - Little Science
- The Automation of Scientific Computing
 - Algebraic Solvers
 - Functional Spaces
 - Equation Descriptions
 - Domain Representations
- The Future of Scientific Computing

Automation Standard

Math Interfaces of Auto of Sci Comp

A Terrel

cience and computing Big Science

The Automation of Scientific Computing

Algebraic Solvers
Functional Spaces
Equation Descriptions
Domain Representation

The Future of Scientific Computing

Already Matlab is standard. Why?

Functional Spaces
Equation Descriptions

The Future of Scientific Computing

Already Matlab is standard. Why?

Because with '\', the user does not have to chose between the following algorithms:

- Cholesky factorization
- QR factorization
- LU factorization
- Gaussian elimination with partial pivoting
- Least Squares fitting

Computing = Big Computing

We should not settle for less

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing

The Automation of Scientific Computing

Functional Spaces
Equation Descriptions

The Future of Scientific Computing

Questions

Andy R Terrel
Computer Science Department
University of Chicago, Chicago, IL
aterrel@uchicago.edu

Math Interfaces of Auto of Sci Comp

A Terrel

cience and omputing g Science

The Automation of Scientific Computing

Functional Spaces
Equation Descriptions
Domain Representations

The Future of Scientific Computing